
!

/

Analyzing High Energy Physics Data

Using Database Computing:

Preliminary Report*

Andrew Baden, Chris Day,

Robert Grossman, Dave Lifka, Ewing Lusk,

Edward May, and Larry Price

December, 1991

Abstract

We describe a proof of concept system for analyzing high energy physics

(HEP) data using database computing. The system is designed to scale up

to the size required for high energy physics experiments at the Supercon-

ducting SuperCollider (SSC) laboratory. These experiments will require

collecting and analyzing approximately 10 to 100 million "events" per year

during proton colliding beam collisions. Each "event" consists of a set of

vectors with a total length of approximately one megabyte. This repre-

sents an increase of approximately 2-3 orders of magnitude in the amount

of data accumulated by present large I-IEP experiments. The system is

called the HEPDPC System (High Energy Physics Database Computing

System). At present, the Mark 0 HEPDBC System is completed, and

can produce analysis of HEP experimental data approximately an order

of magnitude faster than current production software on data sets of ap-

proximately 1 GB. The Mark 1 HEPDBC System is currently undergoing

testing and is designed to analyze data sets 10 to 100 times larger.

1 Introduction

In this paper, we describe a proof of concept system for analyzing high energy

physics (HEP) data using database computing. The system is designed to scale

up to the size required for high energy physics experiments at the Superconduct-

ing SuperCollider (SSC) laboratory. These experiments will require collecting

and analyzing approximately 10 to 100 million "events" per year during proton

colliding beam collisions. Each "event" consists of a set of vectors with a total

*For more information, contact Robert Grossman, Laboratory for Advanced Com-
puting, m/c 24g, University of Illinois at Chicago, ]Box 4348, Chicago, IL 60680,
grossman@math.uic.edu.

(NASA-CR-190332) ANALYZING HIGH ENERGY

P_IYSICS OATA USING DATABASE C_MPUTING:

PRELIMINARY REPORT (Chicago Univ.} 17 p

CSCL 20C

G3/73

N92-24981

Uncl dS

0091206



length of approximately one megabyte. This represents an increase of approxi-

mately 2-3 orders of magnitude in the amount of data accumulated by present

large HEP experiments.

The system is called the HEPDPC System (High Energy Physics Database
Computing System). At present the Mark 0 HEPDBC System is completed,

and an early version of the Mark 1 HEPDBC System is undergoing testing.

The Mark 0 version of the system was built using commercial software and is

designed to analyze efficiently approximately 1-10 GBs of data. The Mark 1

version of the system is being written in C++, with hooks into commercial

databases, and is designed to analyze 10-100GBs of data. Later versions of the
system are in the planning stages and will scale up to the TB range and beyond.

2 Background

2.1 Scientific databases

A database provides access to data via queries regarding the data itself, and not
its physical or logical location. The relational model is a simple and powerful

model suited to many business and commercial applications, especially those

applications making use of simple data in a fixed format. Applications, such

as computer aided design, computer aided manufacturing, office information

systems, and artificial intelligence, have resulted in extentions to the relational
model [51, and new models, such as the object-oriented data model [10]. More

recently, applications requiring the management of scientific and engineering

data, such as time series, satellite data, DNA sequence data, seismic data, and

collider physics data have resulted in attempts to define a data model suitable

for these types of applications [8], [12], [14] and [15]. Just as there is currently no

agreed upon definition of an object-oriented data model, there is also no agreed

upon definition of a data model for scientific and engineering computations. In
§ 4, we briefly describe the provisional data model we are using.

Issues which turned out to be important in our system are somewhat different

than issues of importance in traditional business applictions or more recently

applications in CAD/CAM and articifical intelligence. For our application in

ttEP, the main requirements of our system are:

• the ability to query very large amounts of data (expected to greater than

1PB), stored in a hierarchical storage system [13]

• the ability to efficiently execute numerically intensive queries specified by
Fortran or C functions

• the ability to support large, complex objects

• a mechanism for working with derived data, that is data that is derived
from other data via some computation, and the ability to dynamically



determinewhichdatashouldbeprecomputedor computedin theback-
ground.

Issuesof importanceinotherscientificdatabases[8],suchasthelevelof inter-
pretationof thedata,theintendedanalysisofthedata,thesourceof thedata,
andtheuseofmetadatadonotpresentmajorproblemsin thisapplication.

2.2 Traditional data analysis in HEP

In thissection,wereviewhowHEPdataiscurrentlyanalyzedfollowing[3].At
present,theCDFcollidingbeamexperimentat theFermiNationalAccelerator
Laboratory(FNAL)measuretheradiationproductsfromthecollisionofparticle
beamsat ratesofupto285kHz.Collisions,orevents,arerecordedindetectors
whichprovide_ 150kbytesofdigitalinformation.However,onlyasmallfraction
(_.1Hz)of thetotalnumberof eventsarerecordedonmagnetictapefordata
analysis.Thecomputingenvironmentcanbebrokendowninto thefollowing
categories:

• Online: In theonline stage, events which warrant scientific investigation

are identified through a sequence of several decisions (a mixture of hard-

ware and software processing), each requiring greater execution time. A

decision f.o keep a particular event, called a trigger, results in the corre-

sponding raw data being collected and written to magnetic tape.

• Produc| ion: In the production stage, the raw data is processed by com-

puter codes (production codes) which reconstruct the digital data words in

order to identify the number and type of the particles which characterize
each event. Specifically, the result of the production codes are dimensional

quantities such as energy, mass, momentum, orbits, event topology, and

etc. These data summaries are written to some medium, usually magnetic

tape, for further analysis, referred to as data summary tapes (DSTs).

• Analysis: In the analysis stage, computations are performed on the data

in the data summary tape. For instance, such computations can be used

to discover (or verify) correlations between certain types of events, or

measure an average of a quantity over a particular set of events.

Most HEP computing schemes store data in sequential records using memory

management software systems written at HEP laboratories. Data are analyzed

via computer programs which are written mostly in Fortran, access events from

storage as records, read it into common memory, and provide hooks for users to
apply custom-written subprograms. Each of these programs are compiled and

linked to a standard set of libraries. Linking, at present, is not usually done

interactively.

Once the analysis program is built, it is made to loop over a number of
events. For each event the entire record is read from storage, and those parts



whicharerelevantto theparticularanalysis(andveryfewanalysesuse all of

the data in a single event) are used by the user subprogram. For instance, a
typical session would consist of:

1. Read in each event. If the events are on tape, access the tape first. For
each event:

• require certain global event characteristics;

• calculate quantities from each event (e.g. the presence of a certain

number of a certain type of particles);

• require the particles to have certain characteristics;

• fill histograms or scatter plots of distributions.

2. If desired, save events passing requirements onto disk or tape.

3. Report results of calculations, histograms, plots, regressions, etc. at the
end of session.

Although this procedure is straightforward, inefficiencies arise since the pro-
cedure is repeated several times to produce sequentially smaller datasets for

analysis by different working groups. Also, although it is often convenient to

produce additional datasets, this is not usually done, due to the expense and

difficulty of doing so. The critical point is that access to the data is via entire

event records, and in a sequential manner, i.e. events are read as atomic.
Expectations at the SSC are that there will be an increase relative to the

largest ongoing HEP experiments to date of about -,, 1 order of magnitude in

the size of each event (to 1 Mbyte/event), -_ 2 - 3 orders of magnitude in the

number of events collected for analysis (from 1 to 10-100 Hz to tape), and ,,, 1
order of magnitude in the number of physicists who will be accessing the data

(--, 1000 physicists).

2.3 Prior Work

Recently, the data analysis stage has been made easier by using an interactive
data analysis program called PAW and a data access package called Adamo,

both of which were developed at the European Organization for Nuclear Re-

search (CERN) in Geneva, Switzerland. The program PAW (Physics Analysis
on Workstations) resembles a spreadsheet program and incorporates an inline

Fortran interpreter. The Fortran interpreter eliminates the need to need to link

the large Fortran programs previously used to analyze the data. The interpreter

has been found to be fast enough, since most of the time spent when running in
the interpreter mode is for I/O. Data analysis with PAW must be preceded with

a transformation of the data to a limited relational tuple. However, once the

data is transformed, the program allows one to interactively identify events with

computed quantities passing certain thresholds (cuts) and to study correlations



andanti-correlationsof the particles and events. The program also supports

many standard statistical operations, such as constructing histograms, scatter

plots, curve of best fit, and etc. However, the system has well-defined data

structures which do not allow dynamic changes, and require a preprossing to

transform existing HEP data (which is by nature dynamic).
Adamo is a data structuring package, developed for the Aleph experiment at

CERN, and written in Fortran [1]. It is based on relational tables and allows the

modeling of the complex event structures used in ttEP. However, its modeling

is limited to a single event at a time, that is, a complete event is read into

memory and restructured into Adamo tables. The program can then access

portions of the event through relational queries. While this model is good

for production code, where all information about a single event is needed at
once and information about other events is irrelevent, it is not appropriate for

analysis, which involves the collection of statistics from a large number of events,

each statistic based on only a subset of each event's information.

3 The Mark 0 HEPDBC System

Using a proof-of-concept system (the Mark 0 HEPDBC System), we analyzed
approximately 0.6 GB of data from the CDF experiment at Fermi National

Laboratory to produce the mass histogram of psi-candidates in Figure 1, which

reveals a psi particle at approximately 3 GeV (the square of the mass is plotted
in the histogram). The queries producing this hisogram required approximately

30 seconds of CPU time and 41 seconds of elapsed time on a Sun Microsystems

SparcStation 1. For comparison, the program ACDUMPEV, which is currently

in production use at Fermi National Laboratory, required approximately 14
minutes and 12 seconds of CPU time and 1 hour and 12 minutes of elapsed time

on a DEC VAX. These times are given for rough illustrative purposes only:

there a variety of reasons while the comparasion cannot be taken at face value.

We expect, though, that a naive implementation of our system would result in
approximately an order of magnitude speedup in the analysis of HEP data, and

that more sophisticated implementations would result in substantially greater

speedups. Moreover, our system is designed to handle the larger amounts of

data expected by the next-generation collider beam experiments.

3.1 System Architecture

We planned an architecture which would accommodate the development of the

system over a period of several years. This architecture is shown in Figure 2.

An important objective of this design is its modularity: research and prototype
development of various parts of the system can proceed relatively independently

once certain interfaces are defined. The right-hand edge of the diagram repre-

sents the current analysis path for HEP data. We have defined an external

format (item 3) and begun the translation process (item 2) to make a relatively



smallbut interestingsetof dataavailableinaneasilymanipulatedformat.This
hasmadeit possibleto conductpreliminaryexperimentswith commercially
availabledatabasesystemsin orderto comparetheeaseandspeedof doinga
typicalanalysisin multipleways.Somepreliminaryresultsaregivenbelow.
Researchis continuingon theexactformthatthesystem-independentqueries
andoutputshouldtake.Wehaveconstructedasimplefront-end(Figure3)that
allowsinteractiveaccessto thedatabasesystemsandinteractivemanipulation
ofhistogramdata.In Figure3,weseeonehistogramidentifyingthepsiparticle
andanotheridentifyingtheZparticle.Thatdatais fromthequerydescribed
inSection3.2.

Thedataweanalyzedwasfirst translatedfromacompressedVAXbinary
formatintoaneutralformatconsistingof ASCIIdataarrangedinC-structures.
Thisdatawasthenloadedinto a prototypeof theI=IEPDBCsystemwritten
on top of Sybaseandinto a prototypeof the HEPDBCsystemwrittenon
top of ObjectDesign'sObjectStore. A frontendthenallowedthe userto
querythesystemandto producethehistogramplots. Theright handedge
of thefigureillustratestheconventionalmeansof analyzingHEPdatausing
theAnalysisControlProgramandPAWdescribedin Section2.2. This figure
alsoillustratespartsof thesystemunderdevelopment,but not yet complete,
includingasuitabledatamodel[4]andasuitablequerylanguagefor analyzing
scientificdata. Alsoundertestingis a standaloneversionof the HEPDBC
System(theMark 1 HEPDBC System) that is independent of any commercial

system and written in C++.

3.2 An Example

In this section we give an example of a representative physics analysis query

and compare its implementation in the three prototype environments. Stated

in English, the query is as follows:

1. Find all records which are events and have exactly 2 muon tracks.

2. Find the calibrated energy and momenta and form the 4-vectors for each

muon track.

3. Calculate the effective 2 particle mass from the summed 4 vectors.

4. Order the result for histogramming.

Currently, this type of query is carried out by running a Fortran program of

more than 300 lines. Both the relational and object-oriented database versions

of this query are simpler and faster. We give here the C-t-+ code necessary to
express the above query against the data stored in an Object Store database,

and also the SQL query required to express the above query against a Sybase
database.
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extern database *dbTEvent;

extern database *dbTLepton;

class TEvent;

class TLepton;

class TEvent {

public:

persistent <dbTEvent> os_Set<TEvent*> extent;

int runNumber;

int eventNumber;

float vertex;

TLepton *leptonl;

TLepton *lepton2;

TEvent() {extent.insert(this);}

"TEvent();

friend ostream_ operator << (ostream&, TEvent_);

friend istream& operator >> (istreamk, TEventR);

};

class TLepton {

public:

persistent <dbTLepton> os_Set<TLepton*> extent;

float p[4]; // 4-momentum

float charge;

TLepton() {extent.insert(this);}

"TLepton() {extent.remove(this);}

friend ostreamk operator << (ostreamR, TLepton_);

friend istreamk operator >> (istreaml, TLeptonR);

};

Figure 4: Definitions of classes TEvent and TLepton.
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os_Set<TEvent*> neutralEvents;

os_Set<TDiLepton*> neutralDiLeptons;

os_Set<TDiLepton*> psiCandidates;

os_indsx_path massSqPath;

of stream result ("massSq. dat") ;

dbTEvent = database::open("/chris/Psi/dbPsi-simple", 1);

dbTLepton = database::open("/chris/Psi/dbPsi-simple", 1);

dbTransient = database::get_transient_database();

do_transaction() {

cout << ' Number of events = "

<< TEvent::_xtent.cardinality() << "\n";

neutralEvents =

TEvent::extent[: this->leptonl->charge == -this->lepton2->charge :];

cout << " Number of neutral events = "

<< neutralEvents.cardinality() << "\n";

foreach(TEvent* neutralEvent, neutralEvents) {

neutralDiLep_ons i=

new(dbTr_nsient) TDiLepton(*neutralEvent->leptonl,

*neutralEvent->lepton2);

}

massSqPath = pathof(TDiLepton*, massSq);

neutralDiLeptons.add_index(massSqPath, os_Collection::ordered);

psiCandidates =

neutralDiLeptons.query("TDiLepton*",

"(7.0 <= massSq) Rk (massSq <= 15.0)",

dbTransient);

cout << " Number of Psi candidates = "

<< psiCandidates.cardinality() << "\n";

foreach(TDiLepton* psiCandidate, psiCandidates) {

result << psiCandidate->massSq << "\n";

}

Figure 5: A query computing Psi candidates.
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Number of events = 7639

Number of neutral events = 5138

lumber of Psi candidates = 1098

Figure 6: Result of Psi query.

select count(*) from dimuons2

select run_number, eventnumber, e=lepton_l_energy+lepton_2_energy,

pz=plz+p2z, py=ply+p2y, px=plx+p2x

into two_particle_4v from dimuons2 where charge_l+charge_2=O

select count(*) from two_particle_4v

select run_number, event_number, m=sqrt(e*e-pz*pz-py*py-px*px)

into two_particle_mass from two_particle_4v

select run_number, m from two_particle_mass

where m > 70 order by masc

Figure 7: SQL version of the Psi query.

4 Scientific Data Model

The Mark 0 HEPDBC System was designed using an entity-relationship model

[7] and using a scientific data model developed for this purpose (more fully

described in [4], and briefly reviewed here. The use of an entity-relationship

model proved helpful in developing an understanding of the data and organizing

for loading into the various prototype databases. One satisfying result of the

analysis was that many of the subsets of data (called "YBOS banks" in the HEP

community) emerged as entities or parts of entities in the ER model, which was
developed through discussions between physicists and computer scientists with

no regard for current data structures. Given that the YBOS system was designed

intelligently, this served as a valuable check on the ER-model. A preliminary

ER-diagram is given in Figure 8.

The scientific data model we are developing supports objects, attributes,
methods, collections, inheritance, and a notion of data-dependency. Its salient
features are:

objects The basic entities are objects. Objects are instances of classes. Ex-

amples of classes include Integers, Strings, Vectors, FourVectors, Events,
and ParticleCandidates.

attributes Objects have internal states or attributes.

methods Objects have functions or methods acting on them.

12
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inheritance Classes can inherit attributes and methods from other classes.

The prototype we built above Object Store supports multiple inheritance.
The current Mark 1 prototype of the database supports single inheritance.

collections Objects may be grouped together into collections. Typically, this

is done by selecting objects from other collections on the basis of their
attributes or on the basis of the results of methods acting on them. For

example, in Figure 5, NeutralEvents is a collection consisting of objects

of type TEvent which contain two leptons of equal, but opposite charge.

derived data A class C is said to be derived from one or more other classes

Di, if the values of instances of class D are functionally dependent on

instances of the classes Ci. When the values of instances of class Di are

changed, the changes are propagated (either automatically, or after certain

triggers) so that instances of class C are recomputed.

5 Discussion

In this section, we make a number of remarks concerning our experience to date

in analyzing HEP data using the HEPDBC System.

Remark 5.1 An important advantage of a data model supporting complex

objects is the ability to access just the parts of the events necessary to process

a given query. This is one of the main reasons for our speed up over the current

production version of the physics analysis system.

Remark 5.2 One of the main advantages of system supporting methods is the

ability to incorporate Fortran and C functions efficiently into the query and
access methods.

Remark 5.3 For the types of queries studied, a traditional transaction model

seems inappropriate. By and large, the data is historical, infrequently accessed

and almost never written. Most of the computations require only transient

structures. The end of a long sequence of computations will be a table or
collection that can typically be stored in a "local" database used by a working

group. A transaction model may be appropriate for the smaller, local databases.

Remark 5.4 The analysis of ttEP data requires that a hierarchical storage

system [13] be incorporated seamlessly into the database. Much of the HEP
data will be on near-on-line storage systems. It is necessary to access such data

in exactly the same way as data in secondary storage.

Remark 5.5 Better tools must be developed to support databases distributed

over hundreds of disks. Currently, the CDF experiment we are analyzing con-

tains approximately 1.5TB of data. Our Mark 0 database can analyze in its

current form several GB's of data. One problem, for example, arises when the

systems table describing the database do not fit into one disk partition.
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Remark 5.6 An important aspect of scientific databases has been the proper

use of metadata [15]. In our case, this doesn't seem to be a difficulty for two

reasons:

• Modeling the data using the objects-subobjects and objects-attributes

graphs seems to provide sufficient structure for easy navigation and access
to the data.

• The analysis of HEP data proceeds naturally by a sequence of threshold

queries gradually reducing the data into smaller and smaller data sets. A

catalog of these datasets, together with a list attached to each event of

the datasets to which it belongs to seem to be all that is required for the

efficient analysis of HEP data.

6 Conclusion and Future Directions

In summary, the Mark 0 HEPDBC System showed that it was possible in prin-

ciple to perform the off-line analysis of HEP data using database computing.

With this experience, a preliminary version of the Mark 1 version of the system

has been designed and parts of it are in the early stages of testing. The Mark 1
version of the system is designed to analyze HEP data spread over many disks

and stored in a hierarchical storage system and to provide the necessary tools

for a collaboration to work with the many datasets used by different working

groups during the course of an experiment. To meet these goals, the Mark 1

system is organized into:

EventStore This is a large store for the historical data of the experiment.

The data is stored in a hierarchical storage system. The EventStore is

infrequently updated.

EventDatabases Each working group makes uses of an EventDatabase, which

is obtained by a database administrator making suitable queries on the

historical EventStore. Working physicists then analyze the data using

appropriate tools accessing the EventDatabase.

Although the same data model and query language is used for both parts of the

Mark 1 system, there are important differences:

• The EventStore is closer to a file sytem than a database: since the data

is historical, concurrency controls, facilities for back up, recovery, schema

consistency, etc. are restricted to the EventDatabase.

• Due to the expense of queries to the EventStore, only database adminis-

trators are allowed to query it. Tools to cost the expense of queries will
also be needed.
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